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Abstract
The soaring location-based social services not only make
it possible to take advantage of one additional source
of information: the places people visit, but also present
graph structure consisting of individuals and places in
certain relationship. In this paper we investigated the in-
teractions between venues in Foursquare network. Pro-
vided with the check-in number for each venue as well as
the transitions between them, we studied the basic char-
acteristics of the network, detected and analyzed com-
munity structures, and modeled the graph evolution with
various techniques. Our work has strong application
uses and potential business values, such as using commu-
nity structures to recommend venues for users based on
tastes, and to predict future popularity of venues, which
can be essential for business owners.

1 Introduction

The dimension of location bridges the gap between the
physical world and online services, bringing social net-
works back to reality. Thanks to the widespread adop-
tion of location-sensing enabled devices, location de-
tection and sharing is embraced by almost all large so-
cial networks, and understanding location-based social
networks(LBSN) empowers us to perform tasks varying
from recommending interesting activities to discovering
one’s life pattern.

This paper examines the dataset from Foursquare, one
of the largest location-based social networking websites
for mobile devices. We are interested in the location-
location analysis of the given dataset. In particular, we
focus on three primary domains: basic graph structure
analysis, community analysis and graph evolution mod-
eling. The basic graph structure analysis presents the
high-level overview of the place graph, such as distri-
bution of different attributes and their relationships. In
community analysis, we experiment multiple techniques

for community detection, compare the outcomes, and at-
tempt to interpret the community formation with map vi-
sualizations and related information of the city. Finally,
given the dynamic nature of social network, we explore
methods to model graph evolution in terms of the check-
in number attribute for each node.

2 Previous Work

The subject of analysis in this project is the transition
graph constructed from the Foursquare transition data,
with venues as its nodes, and edges recording the num-
ber of transitions between venues. It will be a directed,
weighted graph with attributes in its nodes and edges.
Thus we have examined a number of literatures regard-
ing weighted networks, especially in the domain of com-
munity detection. Lu et al [9] has proposed an algorithm
for community detection in weighted networks, so do Jin
et al. in [4]. Marrama and Low[5] have applied multiple
community detection algorithms in the weighted Github
network. To accomplish check-in prediction in our evo-
lutionary analysis, we are inspired by the classic PageR-
ank algorithm proposed by Page et al [8].

3 Data Collection and Graph Construction

For this project we used Foursquare Dataset. Every day
millions of people check-in to the places they go on
Foursquare and in the process create vast amounts of
data about how places are connected to each other. As a
sample of such ”venue” interconnections for 5 major US
cities, the dataset contains meta data about 160k popular
public venues and 21 million anonymous check-in tran-
sitions which represents the trips between venues. There
are two types of information we obtain from the dataset:
(1) the detailed information about the venues, such as
their geographical location, category and checkin num-
bers. (2) the transition between venues, with all transi-
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tion time shorter than 3 hours. In addition, noticing the
3 hours transition time limit, we realize it would be hard
to have a lot of edges between venues in different states,
such as from San Francisco to New York. Therefore in
our current analysis, we used a processed subset of the
data where all the venues are in the city of San Francisco.

Insofar, we have constructed three sets of graphs:
transaction graph (TG), venue graph(VG), and venue
snapshot graph(VSG). TG is a simple directed graph,
with venues as its nodes, and transition routes as its
edges. Whenever there exists a transition log be-
tween two venues, a corresponding edge would be
added into the graph. This graph is aimed to help
us understand how venues and transitions are dis-
tributed in a major city (i.e. San Francisco). VG
is a directed graph with node and edge attributes (i.e.
TNEANet). Based on TG, node attributes have been
added into VG: vid(venue id), ckn(checkin number in-
sofar), sts(start checkin timestamp), ets(end checkin
timestamp), lat(latitude), lng(longitude), category, pcat-
egory(parent category); and also the edge attributes:
trsn cnt(transition count insofar), duration(average tran-
sition duration insofar). Because VG covers most of the
information we need, it has been the graph we mainly
work on. VSGs are a set of snapshot graphs of VG,
which are used to analyze the evolution of VG. One-
year foursquare checkin information are divided into 12
months, and for each month, a VSG is created. By look-
ing into the dynamic change of graph characteristics, we
are able to learn more about the evolution of VG.

4 Methods and Analysis

4.1 Basic Structure Analysis
Given a graph, in order to get a good sense of the graph,
we first conduct a series of systematic graph analysis, in-
cluding distribution analysis, bow-tie analysis, etc. The
algorithms we used are mostly described in class, so
here redundant method descriptions are omitted. Instead,
some interesting results and tentative explanations are
provided.

4.1.1 Result and Analysis

• Distribution Analysis:
We first analyzed the static Foursquare VG, and
found the node distribution and checkin distribu-
tion roughly follow the power-law distribution, with
α = 1.33 (Figure 1a). However, an interesting point
about these two graphs is that unlike the classical
power-law distribution, there is a ”plateau” in the
middle (i.e. around degree 500 and 100 check-in
respectively). We guess this seemingly bizarre dis-

tribution may come from the mixture of gaussian
and power-law distribution. Power-law represents
the real nature of node degree distribution, while
the gaussian reflects the possible random check-in
behavior of user.

(a) Node Degree (b) Ckin Count (c) Transition

Figure 1: Venue Graph Distribution Analysis

• Bow-tie Analysis: According to Andreil et. al.[2],
graph structure in the Web often presents a bow-
tie shape. A similar analysis was done to the
Foursquare VG. But interestingly, the ”bow-tie” we
obtained seems to be an extremely skewed bow-
tie shape (Table 1). Unlike the bow-tie proposed
by Andreil, our skewed bow-tie has much larger
out-component and largest-SCC ratio. This means,
most of the venues live in a strongly-connected
environment. And also there are quite a number
of venues always become the ”end point” of cus-
tomers’ moving pattern. A reasonable guess is that
living community or working locations may consti-
tute this portion of ”end point”.

Table 1: Table of Venue Graph bow-tie statics

NO. Names Value
(1) Total Node Number 16218
(2) Total Edge Number 771831
(3) The largest SCC 53.10%
(4) The in-component of the largest SCC 0.16%
(5) The out-component of the largest SCC 46.65%
(6) The disconnected components 0.09%

• Transition Count Analysis:
The maximum transition count is 1935, which
means the commute between that pair of nodes are
extremely frequent. But most transition counts fall
in between 1 and 30. This ”long-tail” phenomenon
causes the oscillation in our Pagerank-based graph
evolution analysis, which will be covered in the next
section. Again, the transition count between each
pair of venue nodes also fit into one power-law dis-
tribution perfectly. But the interesting point is that
the α = 4.12(Figure 1c) is much higher than typi-
cal 2 < α < 3 range(e.g. internet graph, or human
language graph). The high α means the graph has
higher-degree of finite moments.
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4.2 Community Analysis
Community structure has been an active research area
in network analysis, as many networks of interest in
natural science, social science etc. are naturally di-
vided into communities or clusters. It’d be interest-
ing to know whether any community structures also ex-
ist in our Foursquare transition graph, where we have
venues as nodes, and transitions between venues as
edges. If two venues happen to belong to the same com-
munity, it means people often go from one to another,
indicating these venues are popular among people with
some similarities, possibly in taste, culture, occupation
or lifestyle. Investigating these community structures
would not only surface interesting observations of rela-
tions between people and venues, but also provide op-
portunities for better recommendations of places to go,
and smarter strategies of advertisements targeting at spe-
cific demographic groups. In this part, we would attempt
community detection algorithms progressively and eval-
uate their performance.

4.2.1 Algorithms

1. Modified Girvan-Newman Algorithm
The first algorithm we tried is modified Girvan-
Newman network, which is a variant of the most pop-
ular Girvan-Newman (GN) [7] community detection
algorithm. Considering our VG graph is a directed
weighted graph, we borrowed the idea from Mar-
rama [5], to incorporate the ”scaling-back” effect of
the edge weight. The new betweenness formulation be-
comes:

δv(v,w) =
δsv

δsw
(1+∑

x
δs(w,x))

1√
W (v,w)

(1)

where W (v,w) is the edge weight of the edge (v,w).
Moreover, in order to make faster calculation of be-
tweenness, we sacrifice the accuracy by calculating
the approximate betweenness centrality instead of the
above accurate one. The idea is to repeatedly sample a
random vertice vi ∈V , and perform BFS from vi to get
the dependency score δvi(e) of every edge e using the
above modified formula. Sample until the accumulated
betwenness of each edge ∆e is greater than cn for some
constant c ≥ 2. Let the total number of samples be k,
then the estimated betweenness is given by n

k ∆e.

2. Clauset-Newman-Moore Algorithm
To analyze community structures of very large net-
works we often see today, a group of algorithms that
maximize the quantity modularity are proposed. One
commonly used one among them is Clauset-Newman-
Moore (CNM) algorithm, which greedily approximates

the optimal modularity and proves to work substantially
faster than GN algorithm (O((m+ n)n)). It is demon-
strated by Clauset et al. [1] that it’s possible to handle
networks with up to 400, 000 nodes and two million
edges, with this algorithm and some optimization tech-
niques.

The original CNM algorithm is a modularity-based al-
gorithm. The modularity Q is defined as

Q = ∑
i
(eii−a2

i ) (2)

where ei j is the fraction of edges in the network that
connect vertices in group i to those in group j, and ai =

∑ j ei j. Intuitively, it is the fraction of edges that fall
within communities, minus the expected values of the
same quantity based on random graph null model. A
high value of Q generally represents a good community
division. The algorithm starts with a state in which each
vertex is an independent community, and we repeatedly
join communities in pairs, which at each step results
in the greets increase (or smallest decrease) in Q. The
change in Q upon joining two communities is given by
∆Q = ei j + e ji−2aia j = 2(ei j−aia j).

Furthermore, considering the weighted nature of our
VG graph, we again adapted the CNM algorithm into
a weighted version. Based on the suggestion proposed
by Newman, we change the ei j in the modularity for-
mula to the fraction of total edge weight in the network
that connect vertices in group i to those in group j. With
this slight change, we incorporate the weight factor in
our analysis.

3. Conductance-based Algorithm

Recently, there has been research specifically on com-
munity detection algorithms that work on weighted net-
works. Lu et al. [9] have proposed an algorithm for
weighted networks, which can also detect overlapping
communities. This algorithm greedily maximizes the
conductance measure, and chooses the next candidate
node with maximum belonging degree.

The conductance measure of a community C is defined
as:

Φ(C) =
cut(C,G\C)

wc
(3)

If we define cut edges of community C as edges that
connect nodes in the community with the rest of the net-
work, cut(C,G\C) denotes the weights of the cut edges
of C and wc denotes the weights of all edges within
community C including cut edges. It’s obvious smaller
conductance means better community detected.

The belonging degree B(u,C) between node u and com-
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munity C is defined as:

B(u,C) =
∑v∈C wuv

ku
(4)

where wuv denotes the weight of the edge between u and
v and ku is the degree of node u, which is the sum of the
weights of all edges connecting node u. Apparently as
belonging degree approaches to 1, node u is more likely
to belong to community C.

For more details of the algorithm including the pseudo-
code, please reference the paper.

4.2.2 Results and Discussions

1. Modified Girvan-Newman Complexity Analysis

We applied the modified GN algorithm to our test
data – a subset of our transition graph of San Fran-
cisco, which consists of 8291 nodes and 87605 edges.
We have reduced the graph to a weighted undirected
graph. However, the algorithm couldn’t output any
useful data within reasonable timeframes, as Newman
and Girvan algorithm is very computationally expen-
sive. For networks with m nodes and n edges, it runs
in worst case O(m2n) time. This proves that with typ-
ical computer resources available, betweenness calcu-
lation based community detection method is not scal-
able, which usually can only accommodate at most a
few thousands of vertices.

2. Network Community Profile Analysis

To make the original CNM algorithm applicable to our
graph, we first reduced our VG graph to a simple undi-
rected, unweighted graph with around 8, 000 nodes and
70, 000 edges. The algorithm terminates very fast, usu-
ally within a few minutes. Then, we also investigated
the modified CNM algorithm, and experimented on the
weighted VG graph. Modularity and Network Commu-
nity Profile(NCP) plot are used in our evaluation.

First, we noticed that the modularity obtained by both
original CNM algorithm (i.e. around 2.7) and our mod-
ified CNM algorithm ( i.e. around 0.6) is surprisingly
low. According to Newman, only communities with
modularity higher than 0.3 can be viewed as significant
community structure. However, as we will show later in
the visualization part, communities detected in our data
can be interpreted with some other information about
San Francisco. We believe this is because the modular-
ity proposed by Newman may not be a suitable objec-
tive function in our case. In other words, the null model
in the modularity formula may not be a good metric,
and therefore the ”magic” number 0.3 means little in
our case.

Second, we used NCP plot to compare the modified
and original CNM algorithm (Fiugure 2). The y-axis
of NCP plot is the NCP score, defined as

Φ(k) = min
S⊂V,|S|=k

φ(S) (5)

where φ(S) = |{(i, j)∈E;i∈S, j 6∈S}|
∑
s
∈Sds

. From Figure 2, we can

see original NCM tentatively divide the graph into few
large communities, which may result in the loss of de-
tails inside each large community. Also, the conduc-
tance drops monotonously along the increase of clus-
ter size, which is an unattractive trivial result, since too
large communities incorporate most of the edges inside
it, and only have few edges stretching out.

However, unlike the original CNM algorithm, our
modified CNM algorithm yields an interesting ’V-
shape’ result, which echoes the discovery mentioned by
Leskovec et. al. [6]. We have applied the unweighted
and weighted versions of CNM to three graphs: transi-
tion graph of downtown San Francisco (transition starts
and ends within a grid area centered at latitude and lon-
gitude (37.76956, -122.42280), radius 0.04), transition
graph within San Francisco (transition starts and ends
within the city) and transition graph starting from San
Francisco (transition starts in San Francisco and ends
elsewhere). These three graphs are represented by red,
blue, and green lines, respectively in Figure 2b. All
three curves show the similar ”V-shape” pattern, indi-
cating the size of 400 nodes per community achieves
the best cluster score.

Another interesting observation is that in the Figure 2b
modified CNM, there is a big drop around cluster score
the size of 15. In fact, the cluster score is 0. After
more thorough investigation, we found this is an iso-
lated community of 15 nodes that have no outgoing
edges.

(a) CNM (b) Modified CNM

Figure 2: Network Community Profile

3. Visualization and Interpretation

To interpret the community detection results, we have
proposed three hypotheses: 1) Venues of the same com-
munity cluster geographically; 2) Patrons of venues
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within one community share ethnical or racial similar-
ities; 3) Different communities have different category
distributions.

To test the first two hypotheses, we visualized the
venues on the map, and color coded different detected
communities. Note that the communities here repre-
sent a cluster of venues that people often check-in se-
quentially. In Figure 3, we can clearly see that venues
of the same community tend to cluster geographically,
e.g. there’s a dense cluster around the downtown area.
This observation matches the intuition that people usu-
ally check in at one place, and then check in at a nearby
place. Meanwhile, note that the biggest community, la-
beled red here, is scattered around the downtown and
spreads throughout the sunset area. We’ll explain this
observation with our second hypothesis.

To test the second hypothesis, we have compared our
community map with the racial segregation map (Fig-
ure 4), created by Dustin Cable at University of Vir-
ginia’s Weldon Cooper Center for Public Service with
data from 2010 U.S. Census and found them surpris-
ingly similar to each other. The community labeled red
corresponds to the Asian community, while the com-
munity labeled orange corresponds to the Latino / His-
panic community. This explains that people from cer-
tain cultures tend to be active around certain areas in
San Francisco.

If we compare the community map obtained via un-
weighted CNM algorithm and that via weighted CNM
algorithm, we can see that the latter has more, smaller
communities, i.e. more detailed community structure.
This observation confirms our initial intuition that uti-
lizing edge weights yields more sophisticated results.
Most notably, the downtown community has more in-
ternal structure in the weighted version, which cannot
be explained away just by racial segregation.

To inspect the category distribution within communi-
ties, we found out the top 20 sub-categories that have
the most occurrences in the community. Partial results
of the largest communities in the weighted version can
be found in table ref. The high number of Asian restau-
rants in the red community, and Mexican restaurants
in the orange community again confirm our racial seg-
regation hypothesis. Moreover, the light blue commu-
nity represents the prominent tech startup scene and the
financial area, the pink community has the theme of
shopping and leisure, the green community features ho-
tels and event venues around Union Square and finally
the purple community represents the touristy Fisher-
man’s Wharf area.

It’s interesting that such rich dynamics and diversity of
a city can be inferred purely from these digital traces
people left everyday.

(a) CNM (b) Modified CNM

Figure 3: SF Venue Graph Community Visualization

Figure 4: SF Racial Segregation

4. Overlapping Community Detection

The conductance-based community detection algo-
rithm turns out to have a high time complexity, espe-
cially when one community gets really large. Thus we
haven’t got the complete result of our transition graph
of San Francisco, but we have some partial results that
already show some potentials of the algorithm. It has
detected the Latino / Hispanic community, and sev-
eral smaller overlapping ones along the northeastern
coast, with conductance measure around 0.5. Detecting
overlapping communities and yielding finer structures
promise to be the advantages of this algorithm.

4.3 Graph Evolution Analysis
Graph evolution is an interesting problem in network
analysis, and once modeled correctly, can be a powerful
tool with business value. In particular, Foursquare data

Community color Top 10 sub-categories
Red Chinese Restaurants: 70, Coffee Shops: 66, Sushi Restaurants: 61,

Bars: 58, Cafs: 56, Japanese Restaurants: 51, Grocery Stores: 48,
Parks: 44, Pizza Places: 41, Vietnamese Restaurants: 38

Orange Bars: 66, Coffee Shops: 65, Cafs: 54, Mexican Restaurants: 52, Sand-
wich Places: 42, American Restaurants: 40, Art Galleries: 40, Grocery
Stores: 37, Sushi Restaurants: 36, Pizza Places: 35

Light Blue Offices: 137, Coffee Shops: 72, Sandwich Places: 67, Chinese Restau-
rants: 57, Tech Startups: 52, Food Trucks: 48, Cafs: 34, American
Restaurants: 32, Banks: 32, Bakeries: 28

Pink Coffee Shops: 26, Parks: 23, Cafs: 22, Clothing Stores: 21, Boutiques:
18, Bars: 17, Pizza Places: 14, Light Rails: 13, Sushi Restaurants: 13,
Breakfast Spots: 12

Green Hotels: 57, Clothing Stores: 42, Coffee Shops: 26, Cafs: 21, Thai
Restaurants: 20, American Restaurants: 17, Pizza Places: 17, Bars: 16,
Sandwich Places: 16, Event Spaces: 16

Purple Italian Restaurants: 39, Seafood Restaurants: 28, Hotels: 24, Boats or
Ferries: 22, Bars: 20, Gift Shops: 19, Harbors / Marinas: 15, Pizza
Places: 13, Parks: 13, Cafs: 12

Table 2: Top 10 Sub-category for Each community
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can be a precious asset for business owners as it helps
them to understand how popular their places have been
in the past, however, is there a way to learn about the
future given all the information at presented In this sec-
tion, we present two approaches to model the evolution
of popularity of venues and to predict future popularity
by using check-in numbers for each venue as a proxy.

At a high level overview, we form our problem as
following: at any point of time, given a subset of
venues(e.g. venues in a community, or even venues in
a city), the check-in numbers for each of them, and the
transitions between them so far, what would be the num-
ber of new check-ins for each venue at a particular future
time? In other words, given a snapshot of the graph(with
check-in numbers as node attribute and transition fre-
quency between nodes as edge attribute) and the total
number of new check-in numbers that will be added to
the graph as a whole, the goal is to predict the snapshot
of the entire graph at a future time.

We experienced two different approaches for model-
ing: the first one is based on previous check-in number,
and the other one is based on PageRank [8].

4.3.1 Algorithms

1. Distribution-based Approach
This approach is based on the distribution of historical
data(check-in number of each venue), as it assigns the
new check-ins to venues according to such distribution.
The detailed algorithm is defined as following: suppose
at time t, node v has check-in number ct

v, and we know
between t and t +1, we have M new check-ins, then

c(t+1)
v = M · ct

v

∑
v

ct
v

(6)

The intuition is that venues are likely to continue their
past performance and therefore the graph will maintain
similar popularity structure. As we will see later, this
straightforward method produces relatively good pre-
diction for the whole graph in general, yet it is lim-
ited in nature since it cannot model potential changes
to graph structure.

2. PageRank-based Approach
Notice that the graph has this ”flow” structure between
nodes(i.e. the transition information between venues),
by intuition this fits well in the PageRank model - only
now users instead of jump from one website to another
in browser, travel from one place to another in real
life. Like the Internet graph, in Foursquare place graph
each node(i.e. venue) has a number of ”in-edges”(i.e.
transitions from other venues) and a number of ”out-
edges”(i.e. transitions to other venues), and intuitively

nodes with larger ”in-degree” are likely to get more
check-ins whereas nodes with smaller ”in-degree” are
likely to receive fewer.

Define the total new check-in number as M, the num-
ber of nodes as N, the value of node i (i.e. the pro-
posed check-in number for node i) as ri, the transition
frequency between node i and j (i.e. weight of the di-
rected edge) as fi j, we redistribute the value of ri to all
the nodes it can transit into, based on the frequency dis-
tribution among all destinations. Implementation wise,
given the large number to nodes, we used Power Iter-
ation, which is more plausible than solving a large di-
mension matrix.

Set r_j = M / N for each node j

1. for each j:

r′j = β ∑
i→ j

r j ·
fi j

∑
k

fik
+(1−β )

M
N

2. r = r’

3. if meet exit criteria: return 1;

otherwise go to 1 and repeat the process

We started off with the standard PageRank(with tele-
porting, see pseudo-code), and made a series of modifi-
cation and improvement to reflect characteristics of this
graph.

3. Modified PageRank with teleporting
The above algorithm assumes that the transition graph
has no dead-ends that do not have out-going edges. Un-
fortunately this is not the case in Foursquare dataset -
in fact, analysis shows that on average up to 1

3 of nodes
are dead-ends. To handle this, we added in logic to
explicitly follow random teleport links with probability
1.0 for dead-ends[3]. Furthermore, we ran an initial ex-
periment with different value and found it models the
graph best when = 1. Our modified step 1 of above al-
gorithm is as below.

r′j = ∑
i→ j

r j ·
fi j

(∑
k

fik)
+ ∑

deadend i

ri

N
(7)

4. PageRank with Enhanced Graph
We use the transition graph with the total number of
transitions from one venue to another, up to a given
time, as our directed edge weight. Yet due to its time
sensitive nature, in real life recent check-ins(thus re-
cent transitions) can be more valuable information than
those happened earlier. The intuition is that the pop-
ularity of venues is likely to follow the ”trend” from
last time period. Inspired by this, we decide to use the
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enhanced graph, where the edge puts more weight into
transitions in most recent time period(i.e. one month).
Formally, define new transition graph G’ at time t, and
the number of transitions happened from node i to j
between time t− 2 and t− 1 as transitiont−1

i j , then the

edge weight f
′t
i j for edge (i j) is updated as

f
′t
i j ← f t−1

i j +α · transitiont−1
i j (8)

Where α is a parameter we can adjust based on by
how much we want to favor recent transitions. Our ex-
periment shows the enhanced graph performs relatively
good when we use α = 2.

5. Add Distribution Information

So far our PageRank algorithm has only used informa-
tion of transitions between venues within this subset.
One key observation to make is that the real check-
in number of a venue can be larger than the number
of transitions in our transition graph snapshot, since a
place can get visits that come from another place out
of our subset selections, or get visits without transition
from other places. To capture this nature, we propose
a modified PageRank score distribution, where we not
only use the transition frequency of an edge to deter-
mine how to distribute the score, but also take the pre-
vious check-in number of the destination node into con-
sideration.

r′j = ∑
i→ j

r j ·
(λ+dist j)· f ′i j

∑
k
((λ+distk)· f ′ik)

+ ∑
deadend i

ri
N (9)

Here λ is the smoothing constant to prevent the score
distribution from being distorted too much. Intuitively,
if a node has higher check-in numbers at the snapshot
time, this node is more likely is receive visits in our
PageRank algorithm.

6. Learning from Last Prediction

In this step, we incorporate learning in our algorithm
by adjusting the PageRank score distribution dynami-
cally based on previous prediction results. In particular,
after we perform a prediction, we compare our predic-
tion result to the real data, and calculate learning result
L j for each node j. Initially we use L j =

real value j
prediciton j

,
however it reveals such calculation will adjust to the
opposite direction too much, and therefore we pro-
pose a milder way of calculation by setting L j to 1.1 if
real value j is larger than prediction j, and setting L j
to 0.9 if real value j is smaller than prediction j. Then
in the next round of prediction, we reuse the learning
result in PageRank.

r′j = ∑
i→ j

r j ·
(λ +dist j) · fi j ·L j

∑
k
((λ +distk) fik ·Lk)

+ ∑
deadend i

ri

N
(10)

Therefore, if our model underestimate a node’s check-
in number in previous prediction, the algorithm adjusts
itself to give this node more score in the next round.

4.3.2 Result and Discussion

We evaluate our models by using monthly snapshots
(from month 0 to month 11) of the graph. Specifically,
as we use the first snapshot as base graph for prediction,
and the last snapshot only contains partial data, we apply
different models to predict check-in numbers for month
1 to 10 using previous month’s snapshot, and compare
our prediction with the real graph. We are interested in
learning which model yields a closer outcome to the real
one, with the cost function defined as below:

F(s,s′) = ∑
v

(rsv − rs′v)2

M
(11)

The result measured by the above cost function is
shown in Figure 5. It turns out the distribution-based ap-
proach gives the best performance for the overall graph,
yet, the PageRank algorithm indeed achieves better re-
sults as we add in modifications gradually.

Figure 5: Error Score for Monthly Prediction

Nevertheless, both approaches appear to capture the
basic pattern for next time stamp successfully - as we can
see from the example in Figure 6, the predicted check-
in number of each venue follows the trend of the real
data in general. One interesting observation is that the
distribution-based approach tends to have larger differ-
ence from correct prediction for venues with high visits
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Table 3: F Score (number of successful prediction) for
10 nodes with Highest New Check-ins

Method / Month. 1 2 3 4 5 6 7 8 9 10
PR-M. 127.7(5) 141.7(6) 349.8(5) 133.2(6) 34.7(8) 91.6(7) 80.3(7) 20.1(9) 236.7(7) 271.2
Dist. 85.0(8) 54.2(8) 320.3(6) 198.5(5) 135.1(6) 138.2(5) 114.8(5) 70.8(6) 228.5(6) 296.6(5)

(i.e. nodes with high check-in numbers), whereas the
modified PageRank approach has larger variance at the
tail.

Figure 6: Prediction for distribution-based and modified
pagerank approaches

Inspired by such observation, we further investigated
prediction for high visit nodes. We found that modified
PageRank actually performs better (especially on later
predictions due to the learning over steps) on those par-
ticularly popular nodes both in terms of F score and the
number of nodes we predict ”correctly” - we define a
node to be predicted correctly if the absolute difference
between our prediction and real value is within 20% of
the real value (Figure 7 and Table 3). Here we expected
a higher F score on average since now we only consider
those 10 nodes, each of which has more than 1000 new
check-ins. Also the sequential graphs in Figure 7 shows
the improvement in PageRank algorithm over time steps.

Figure 7: Prediction Comparison for 10 nodes with
Highest New Check-ins

5 Conclusion and Future Work

As shown above, we have successfully adapted the CNM
algorithm to accommodate large-scale weighted net-
works, and used it to uncover community structures in
our transition graph. By means of visualization and cat-
egory analysis, we have shown that applying community
detection on networks of venues, can surface interesting
dynamics and diversity features of a city. Our attempt
with the conductance-based algorithm has shown poten-
tials of efficient algorithms for overlapping community
detection in weighted networks.

To advance our work, one of the directions is to find a
better null model to measure modularity of networks like
our transition graph, which is different from the usual
social network. The detected community structures can
also be valuable in various location-based applications,
such as friend / activity recommendation, overview of the
city for tourists, advertising strategy optimization etc. As
the conductance-based algorithm suffers from complex-
ity problems, there might be ways to optimize the algo-
rithm to make it more practical in the real world.

To model graph evolution in terms of check-in num-
ber, we present two approaches: one using previous
check-in number distribution, the other using PageR-
ank algorithm with various modifications. Our result
demonstrates that both approaches mimic the behavior
of check-in number evolution in the future graph. In par-
ticular, straightforward distribution-based method gives
lower error value in terms of the entire graph, whereas
the modified PageRank algorithm is better at predicting
future check-in for venues with large traffic(i.e. nodes
with high check-in number attribute).

One of the future improvement is to use ”personal-
ized” PageRank by taking the other attributes of a venue
into consideration, such as category and community in-
formation, and therefore defining a ”teleport” set for each
node where they have large chance to transit to such set.
Other directions include to use a combined approach of
the two algorithms, with the assumption that the future
check-in is partially from keep receiving similar portion
of new check-ins(for the visits that cannot be captured
by transitioning), and meanwhile partially dependent on
how it gets visits by transitioning from other venues.
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