Phishing Detection Using Neural Network

NINGXIA ZHANG, YONGQING YUAN

Department of Computer Science, Department of Statistics, Stanford University

Abstract

The goal of this project is to apply multilayer feedforward neural networks to phishing email detection and evaluate the effectiveness of
this approach. We design the feature set, process the phishing dataset, and implement the neural network (NN) systems. We then use
cross validation to evaluate the performance of NNs with different numbers of hidden units and activation functions. We also compare
the performance of NNs with other major machine learning algorithms. From the statistical analysis, we conclude that NNs with an
appropriate number of hidden units can achieve satisfactory accuracy even when the training examples are scarce. Moreover, our feature
selection is effective in capturing the characteristics of phishing emails, as most machine learning algorithms can yield reasonable results

with it.
1 Introduction

Recently, a phishing email has been circulating in the
Stanford community, aiming to collect SUnetIDs and pass-
words. As the majority of phishing emails are formatted
to appear from a legitimate source, a large percentage
of email users are unable to recognize phishing attacks.
Moreover, traditional spam email filters are inclined to fail
to identify phishing emails since most phishing attacks use
more sophisticated techniques and tend to be directed to a
more targeted audience. With the increasing severity of this
issue, many efforts have been devoted to apply machine
learning methods to phishing detection.

One of the most common machine learning techniques
for phishing classification is to use a list of key features
to represent an email and apply a learning algorithm to
classify an email to phishing or ham based on the selected
features. Chandrasekaran et al. [4] proposed a novel
technique to classify phishing emails based on distinct
structural characteristics, such as the structure of the email
subject line and some functional words. They used SVM to
test their features on 400 emails and obtained a 95% accu-
racy rate. However, they did not perform different splits
between training and test data due to the small sample size.
Fette et al. [6] used ten different features specific to the
deceptive methods for phishing classification and obtained
an Fj-measure of more than 90% using a support vector ma-
chine classifier. However they used significantly more ham
emails (7000) than phishing emails (860) in their simulation.

In this project, we use approximately 8762 emails out
of which 4560 are phishing emails and the rest are ham.
We notice that few studies have been done on applica-
tions of neural networks (NNs) to phishing email filtering.
Although NNs normally require considerable time for pa-
rameter training, they usually yield more accurate results
than other classifiers [5]. In our project, we try to detect
phishing attacks through a feedforward neural network by

incorporating some basic features pertaining to the email
structure and external links.

2 Methods

2.1 Features

After referring to available literature, we have selected and
defined a set of features that capture the characteristics of
phishing emails [1} 3, [6].

2.1.1 Structural Features

1. Total number of body parts

According to MIME standard, "Content-Type" attribute of
one email could be multipart, meaning that this email has
multiple body parts. Phishers are likely to utilize this fact to
construct phishing emails with sophisticated structures. By
counting the number of boundary variables, we obtain the
number of body parts in a multipart email. If the "Content-
Type" of the email is not multipart, this feature is set to
0, for the purpose of differentiating from multipart emails
with only one body part. If one part can be further divided
into multiple parts, the number of sub-parts is added to
the number of parts of the entire email. For example, if an
email has 2 body parts, one of which has 2 sub-parts, the
number of body parts is set to 4. However, only 3 parts of
the content are scanned in the feature extraction process.
2. Total number of alternative parts

The multipart/alternative subtype indicates that each part
is an "alternative" version of the same or similar content,
each in a different format denoted by its "Content-Type"
header [7]. As it is not strictly enforced that each part
of the message is the same or similar, phishers often take
advantage of this fact to create fraudulent emails.

2.1.2 Link Features

1. Total number of links

Phishing emails usually contain multiple links to fake web-
sites for readers to sign in.

2. Number of IP-based links

A legitimate website usually has a domain name for identi-
fication while phishers typically use multiple zombie sys-
tems to host phishing sites. Besides, the use of IP address
makes it difficult for readers to know exactly which site
they are being directed to when they click on the link.
Therefore, the presence of IP-based links can be a good
indicator of phishing emails.

3. Number of deceptive links

Deceptive links are the ones with visible URLs different
from the URLs to which they are pointing. Some phishers
use this technique to fool email readers into clicking on the
links.

4. Number of links behind an image

In order to make the emails look authentic, phishers often
place in the emails images or banners linking to a legitimate
website. Thus, if URL-based images appear in an email, it
is likely to be an phishing email.

5. Maximum number of dots in a link

Using sub-domains is another technique phishers often
exploit to make links appear legitimate, resulting in a inor-
dinately large number of dots in the URL [3].

6. A Boolean indicator of whether there is a link that contains
one of the following words: click, here, login, update

To realize the goal of acquiring usernames, passwords, or
credit card information from the readers, phishing emails
often invite readers to login to the fake websites for reasons
such as updating personal information. Therefore, those
words appearing in the link text would be a good indicator.

2.1.3 Element Features

1. A Boolean indicator of whether it is in HTML format
Phishing emails are mostly in HTML format as plain text
does not provide the opportunity to play the tricks of phish-
ing.

2. A Boolean indicator of whether it contains JavaScript
JavaScript enables phishers to perform many actions behind
the scene, such as creating popup windows and changing
the status bar of a web browser [6]. If the email contains
strings, "javascript" or "onclick", this feature is set to one.
3. A Boolean indicator of whether it contains <Form> tag
HTML forms are one of the techniques used to gather
information from readers [3].

2.1.4 Word List Features

1. Boolean indicators of whether the words or stems listed below
appear in the email body: account, update, confirm, verify, secur,
notif, log, click, inconvenien

In typical phishing email examples, these words frequently

appear as phishers fabricate stories luring readers to enter
their personal information.

2.2 Neural Networks

An artificial neural network, or neural network, is a mathe-
matical model inspired by biological neural networks. In
most cases it is an adaptive system that changes its struc-
ture during learning [10]. There are many different types
of NNs. For the purpose of phishing detection, which is
basically a classification problem, we choose multilayer
feedforward NN. In a feedforward NN, the connections
between neurons do not form a directed cycle. Contrasted
with recurrent NNs, which are often used for pattern recog-
nition, feedforward NNs are better at modeling relation-
ships between inputs and outputs. In our experiments, we
use the most common structure of multilayer feedforward
NN, which consists of one input layer, one hidden layer
and one output layer. The number of computational units
in the input and output layers corresponds to the number
of inputs and outputs. Different numbers of units in the
hidden layer are attempted in the following experiments.
To fit our dataset, hyperbolic tangent and sigmoid are used
as activation functions. A comparison of the two is also
conducted. With regard to the training method, we choose
resilient propagation training (RPROP), as it is usually the
most efficient training algorithm for supervised feedfor-
ward NN [9].

2.3 Other Machine Learning Techniques

To further evaluate the performance of NNs in phishing
detection, we compare its performance against that of other
major machine learning classifiers — decision tree (DT),
K-nearest neighbors, naive Bayes (NB), support vector ma-
chine (SVM) and unsupervised K-means clustering. The
same dataset and feature set are used in the comparison.

2.4 Cross Validation

Given a training dataset and a proposed classifer, we as-
sess the performance of the classifier by using hold-out
cross validation, also known as simple cross validation [8].
The dataset is randomly divided into S;4i;, and Sc,. The
proposed classifier is trained on Sy, to get parameter esti-
mates and tested on Ss,. We then obtain the output which
indicates whether each email in S., is ham or phishing.
This procedure is repeated 20 times for different sizes of
Strain and Sey. The proportions of the dataset used as S5y
are as follows: 0.1%, 1%, 10%, 20%, 30%, 40%, 50%, 60%,
700/0, 80% and 90%.

2.5 Evaluation Metrics

By comparing the classification predictions with the actual
categories of the emails, we are able to compute the num-

bers of true negatives (TN, correctly classified ham email),
false negatives (FN, phishing email mistakenly classified as
ham), true positives (TP, correctly classified phishing email)
and false positives (FP, ham email mistakenly classified
as phishing). To evaluate the classifier performance, we
compute the accuracy(Accu) and the weighted accuracy
(Wace) by the following formula:

_ TN+TP
Accu = TP TPIEN @
_ ATN+TP
Waee(A) = 5781 FP) T FNTTP)

In phishing email filtering, errors are not of equal impor-
tance. A false positive is much more costly than a false
negative in the real world [1]]. It is thus desirable to have
a classfier with a low false positive rate. The "weighted
accuracy” measure is proposed by Androutsopoulos et al.
[2] to address this issue. Different values of A can be ap-
plied to the formula (1). Notice that when A is one, the FP
and FN are weighed equally. In our simulations, we pick
A = 9 so that FP are penalized nine times more than FN.
In addition, we compute the precision, recall and F;-score
of each classifer as follows:

iy — TP _ _ TP
Precision = prpp Recall = 1p 7y 3)
2-precision-recall
Fy = SprEconTee 4)

— precision+recall

3 Dataset

The dataset comprises of a large number of real world ex-
amples of ham and phishing emails, all in standard MIME
format. There are a total number of 4202 ham emails and
4560 phishing emails, separated in 7 folders, 3 of which
hold ham emails and 4 hold phishing emails. Each text file
contains a single MIME email.

4 Implementation and Experiments

4.1 Preprocessing
4.1.1 Feature Extraction

We write a Perl script to extract features from one email
example. It reads in the email file, does structural analysis
with the help of MIME::Entity and MIME::Parser modules.
It summarises link features using HTML::SimpleLinkExtor
and HTML:LinkExtractor modules. Other features are
obtained by taking advantage of the powerful regular ex-
pression manipulation of Perl. Ultimately, it outputs a
feature vector together with the ideal value (1 for phishing
email and 0 for ham). To process the entire dataset, another
Perl script is written to call the feature extracting script and
write the obtained feature vectors line by line into one text
file.

4.1.2 Normalization

In order to ensure that each feature has an equal impact in
the classification process, the vectors should be normalized
before applying machine learning algorithms. For each
feature, we find the maximum and minimum values, and
for each value of this feature, we compute:

(current_value—minimum)
(maximum—minimum)

normalized_value =

After normalization, the values of all features fall into the
range of 0 to 1 and each feature contributes the same in de-
termining the classification output. The normalized vectors
of the whole dataset are stored in another text file.

4.1.3 Training and Test Sets Preparation

To conduct the cross validations described above, we di-
vide the dataset into training and test sets with different
proportions. For each proportion, we generate 20 different
training and test sets. This is done by Matlab.

4.2 Machine Learning Implementation

The multilayer feedforward NN is implemented in Java
with the Encog Java Core package, which provides a power-
ful framework to conveniently construct NNs and perform
training and testing. When implementing other machine
learning algorithms, we exploit the corresponding off-the-
shelf Matlab packages.

4.3 Data Analysis

Once we obtain the classification predictions, we compute
TN, FN, TP, FP, Accu, Wpccy, Precision, Recall and F;-score
as described in the method section. We compare different
neural networks by varying the units in the hidden layer
as well as the activation function. We also compare the
performance of neural networks with that of other machine
learning techniques.

5 Results

As mentioned in the previous section, to evaluate each
neural network classifier, we calculate the average Accu
and Wyeey (A = 9) in 20 cross validation procedures for
each training size. As shown in Figure 1 and Figure 2,
when the training size is small, more hidden units tend to
overfit the data while fewer hidden units tend to underfit.
However, when the training set is large enough, the num-
ber of hidden units does not greatly affect performance.

0.98

0.96 —
- 0.94
§ 0.92 hidden units
5 m 2
3 0.90 4
‘“. 6
9 0.88 =8
< 0.86 . 12
0.84 14
16
0.82 18
0.80

01 1 10 20 30 40 50 60 70 80 90

percentage

Figure 1: Each curve shows the average Accu for an NN classifier
with a specific hidden layer size.

0.95
>
Q
£ 0.90 Hidden Layer
=
8 m 2
< 4
< 0.5 ve
(]
£ / =38
.g 0.80 = 10
= m 12

- - 1

0.70 18

01 1 10 20 30 40 50 60 70 80 90

Percentage

Figure 2: Each curve shows the average Waccy for an NN classi-
fier with a specific hidden layer size.

To further demonstrate the overfitting of the dataset
with a small training size, we examine the Accu and
Wieeu for the 0.1% training set in Figure 3 and Fig-
ure 4. We observe that the two curves both peak
at 8 hidden units and start to decline as more hid-
den units are used. It is also worth noting that the
Wieeu generally drops after penalizing FP more than FN.

0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82

accuracy

2 4 6 8 10 12 14 16 18
hidden units

Figure 3: Accu for NN with 0.1% training size

Weighted Accuracy

2 4 6 8 10 12 14 16 18
Hidden Units

Figure 4: Wicey for NN with 0.1% training size

We compare the NN performance using two activa-
tion functions: hyperbolic tangent (HT) function and sig-
moid function. The results are shown in Figure 5 and
Figure 6. It is noticeable that the sigmoid function per-
forms slightly better than the hyperbolic tangent function.

0.96
0.95
0.94
5, 0.93
0.92
0.91
0.90
0.89 activation function

0.88 m hyperbolic tangent
0.87 sigmoid

accurac

01 1 10 20 30 40 50 60 70 80 90
percentage

Figure 5: Accu of two NN (8 hidden units) activation functions

0.95
>
(2]
£ 0.90
=3
Q
<
3 0.85
)
- 0-80 Activation Function
2 m Hyperbolic Tangent
0.75 Sigmoid
0.70

01 1 10 20 30 40 50 60 70 80 90
Percentage

Figure 6: Wyecy of two NN (8 hidden units) activation functions
We also compare the NN performance with other ma-
chine learning techniques. The results are shown in Figure
7 and Figure 8. Decision tree has the best overall perfor-
mance, while it falls short on small training sets compared
to NN and K-nearest. Generally, most algorithms can reach
an accuracy of 95%, which suggests that the selected feature
set has captured the essential characteristics of phishing
emails. When we perform unsupervised 2-means clustering
on the entire dataset, we are able to achieve 87% accuracy,
which further supports the validity of our feature set.

0.95
0.90 -
> 0.85
8
5 0.80 Method
3 m DecisionTree
< 0.75 K-nearest
m NaiveBayes
0.70 = NN
= SVM1
0.65 = SVM2
0.60
01 1 10 20 30 40 50 60 70 80 90

Percentage

Figure 7: Accu of NN (8 hidden units) and other machine learn-
ing techniques

0.95

.

5090
o 0.
5
3 0.85
z Method
2 0.80 m DecisionTree
'§, K-nearest
g 0.75 = NaiveBayes
= NN
0.70 = SVM1
m SVM2
0.65
01 1 10 20 30 40 50 60 70 80 90

Percentage

Figure 8: Wyecu of of NN (8 hidden units) and other machine
learning techniques

Table 1: Evaluations of NNs with two activation functions

Activation | Accu Wacen | Precision | Recall | F
HT 0.9551 | 0.9494 | 0.9525 0.9618 | 0.9571
sigmoid 0.9516 | 0.9417 | 0.9450 0.9630 | 0.9539

Table 2: Evaluations of NNs and other machine learning tech-

niques

Method Accu Wicew | Precision | Recall | F

DT 0.9658 | 0.9742 | 0.9778 0.9561 | 0.9668
SVM1 0.9218 | 0.8929 | 0.9022 0.9555 | 0.9275
SVM2 0.9579 | 0.9654 | 0.9693 0.9491 | 0.9591
NB 0.9278 | 0.9370 | 0.9460 0.9173 | 0.9367
K-nearest | 0.9558 | 0.9536 | 0.9585 0.9583 | 0.9579
NN 0.9551 | 0.9494 | 0.9525 0.9618 | 0.9571

Table 1 summarizes performance measures for NNs
with two activation functions in detail. As seen in the table,
HT function performs slightly better in terms of all mea-
sures except recall. Notice that the largest difference out
of all the measures comes from W, which suggests that
the HT function is better at avoiding misclassifying ham
emails to phishing emails.

Table 2 summarizes the performace measures for NNs
and other machine learning techniques. As shown in the
table, DT gives the best overall performance. NNs give

the highest recall while still mainitaining a >95% precision,
suggesting that NNs are excellent at detecting phishing
emails while misclassifying only a small portion of ham
emails.

References

[1] Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang, and
Suku Nair. A comparison of machine learning tech-
niques for phishing detection. In Proceedings of the
Anti-Phishing Working Group eCrime Researchers Sum-
mit, pages 649-656, 2007.

[2] Ion Androutsopoulos, John Koutsias, Konstantinos V.
Chandrinos, George Paliouras, and Constantine D.
Spyropoulos. An evaluation of naive bayesian anti-
spam filtering. In Proceedings of the Workshop on Ma-
chine Learning in the New Information Age, 11th Eu-
ropean Conference on Machine Learning, Barcelona,
Spain, 2002.

[3] Ram Basnet, Srinivas Mukkamala, and Andrew H.
Sung. Detection of phishing attacks: A machine learn-
ing approach. Studies in Fuzziness and Soft Computing,
226:373-383, 2008.

[4] Madhusudhanan Chandrasekaran, Krishnan
Narayanan, and Shambhu Upadhyaya. Phish-
ing e-mail detection based on structural properties. In
Proceedings of the NYS Cyber Security Conference, 2006.

[5] James Clark, Irena Koprinsk, and Josiah Poon. A neu-
ral network based approach to automated e-mail clas-
sification. In Proc. IEEE/WIC International Conference on
Web Intelligence (WI), pages 702-705, 2003.

[6] Ian Fette, Norman Sadeh, and Anthony Tomasic.
Learning to detect phishing emails. In Proceedings
of the International World Wide Web Conference(WWW),
2007.

[7] Network Working Group. Multipurpose internet
mail extensions (MIME) part two:media types. http:
//tools.ietf.org/html/rfc2046#section-5.1.4,
1996.

[8] Andrew Ng. CS229 lecture notes. http://cs229)
stanford.edu/notes/cs229-notesb.pdf, 2012.

[9] Martin Riedmiller and Heinrich Braun. A direct adap-
tive method for fast backpropagation learning: The
rprop algorithm. In Proceedings of the IEEE Interna-
tional Conference on Neural Networks, volume 5, pages
586-591, 1993.

[10] Wikipedia. Artificial neural network — wikipedia, the
free encyclopedia.

http://tools.ietf.org/html/rfc2046#section-5.1.4
http://tools.ietf.org/html/rfc2046#section-5.1.4
http://cs229.stanford.edu/notes/cs229-notes5.pdf
http://cs229.stanford.edu/notes/cs229-notes5.pdf

	Introduction
	Methods
	Features
	Structural Features
	Link Features
	Element Features
	Word List Features

	Neural Networks
	Other Machine Learning Techniques
	Cross Validation
	Evaluation Metrics

	Dataset
	Implementation and Experiments
	Preprocessing
	Feature Extraction
	Normalization
	Training and Test Sets Preparation

	Machine Learning Implementation
	Data Analysis

	Results

